
INFORMATION TRANSFER USING THE SFDU

Fred Billingsley, John Johnson, Ed Greenberg, Merv MacMedan
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California, 91109

USA

OVERVIEW

A primary focus of Information Systems activities is to provide the
techniques and tools to enable scientists to locate, acquire, and utilize
data in the continuing search for understanding. This requires the
interfacing of a myriad of discipline oriented data centers and data
archives, providing access to their data sets and supporting tools and
services.

The growth in scientific understanding is based on our ability to transfer
acquired information. At present, the science user community is diverse but
associated, is discipline focused, and utilizes heterogenous processors.
This places stringent data documentation requirements upon the users to
facilitate a common understanding of the transferred data. This common
understanding (multi-discipline focused) will only be achieved after the
diverse disciplines begin to document their semantic definitions.

Information can be defined as the communication or reception of knowledge
or intelligence. In the context of this document, information transfer
must include not only the science data bits, but also the ancillary data
needed for meaningful analysis. In addition all data must be uniquely
identified, and its syntax and semantics rigorously defined and included.

The Consultative Committee for Space Data Systems (CCSDS) is an internat
onal committee which is defining a system to facilitate this information
transfer among the various space agencies and experimenters of the member
countries. The system - the Standard Formatted Data Unit system - outlines
recommendations for data structure description, format registration, and
associated services. [1]

INFORMATION TRANSFER - THE SFDU CONCEPT

The SFDU Concept provides:
1) a means for globally defining and identifying data products,
2) a means for aggregating instances of science, ancillary and

meta data into data products, and
3) a means for administering the data product definitions and

description to ensure their accessability and understanding.

The SFDU methodology promotes documentation rigor through the admin
istrative services provided by the CCSDS Member Agency Control Authorities.
The data registration procedures establish a global data identification
mechanism, which, combined with standard data labelling and aggregation
conventions, enables the self identification process needed to support
meaningful data interchange. The SFDU concept focuses on the standard

11-1

labeling of data to enhance the transmission, storage, and manipulation of
the data contained therein. The contents may be in any arrangement that
can be expressed in a precise way.

In fulfilling the above provisions, the SFDU system is designed to provide
three types of services:

The SFDU Structure Services
Standardized labeling techniques
Standardized aggregation discipline

Data Services
Standard format description technique
Standardized interface to recipient
Methods of numerical data conversion

Information Services
Standard method for registering.and disseminating:

Format descriptions
Vocabulary and dictionaries
Related data

Taxonomy and Structuring

The taxonomy of information transfer ranges from single data elements to
completely identified and defined products. A data element is an
individually named item of data that is used in a processing algorithm.
Elements are collected and structured into data objects (aggregations of
elements or groups) and units (aggregations of objects) with identifying
SFDU labels. Data units range in complexity from simple messages to entire
collections of space-acquired data plus ancillary data from a mission. A
data product consists of units containing not only the data, but data
formats and representations, data element dictionaries, cataloging
information, etc.

The fundamental structure used for carrying the various kinds of data is a
Type-Length-Value Object (TLVO). This is a self identified and self
delimited data object which follows CCSDS labelling rules. It consists of
a fixed length label followed by a variable length value field. The basic
structure of the object is given in the figure below. The two fields of
the label are: a) the TYPE field (which includes the reference name of the
description of the value field) and, b) the LENGTH field (which provides
the length of the value field). The value field may contain data elements
or embedded TLVOs.

Type I Length

Value

l CAID V C SP DDPID I Length of Value : 12l8 bytes

I
Data Elements

or
more TLV Objects

Structured TLV Data Object

I

In the TYPE field, the Control Authority Identifier (CAID) identifies the
CA office which maintains the format definition. The VERSION (V) field

U-1

gives the structure of the label, the CLASS (C) field gives a high level
classification of the content of the value field, and SP denotes two spare
characters. The Data Definition Package Identifier (DDPID) uniquely
defines (within a CA) the package which contains the complete definition of
the data object. The CAID and the DDPID together (called the Control
Authority and Data Definition Package Identifier or ADI) provide globally
unique identification and definition of the object.

When the value field consists of data elements, the ADI identifies the
appropriate Data Description Package (DDP) describing the (user) data.
Alternately, it may contain additional TLVOs, in which case the ADI
identifies the label processor. TLVOs may be nested arbitrarily deeply,
forming data products or Standard Formatted Data Units (SFDU).

If a data product, consisting of several classes of objects where the total
length is not known, is to be created, then aggregation by reference is
used. There are several such methods available, as well as the aggregation
by envelope used when the length is known.

Data Definition

The Data Definition Package (DDP) structure and content is the subject of
current study by the CCSDS. The intent is to supply the data product user
with the conceptual or logical description of the data as well as the
format and representation of the data. This information will be packaged
with the data such that a suite of standard software, conforming to SFDU
recommendations, at the user's installation can transform the data to
conform to his machine architecture and can present standard views for
applications.

The content of the DDP will include categories of information such as the
following:

1) Data Entity Dictionaries (DED) which include semantic
information.

2) Data Definition Records (DDR) which contain the data
object formats and representations.

The DDP can be kept in a library and accessed as needed through the ADI of
a TLVO being processed. In the case of archives, the DDP information may
be kept with the data and sent along with an order.

Data Product Formation

Data products are structures arranged according to a specific taxonomy to
improve one's ability to understand and process the information contained
therein. To facilitate aggregation, identification, and definition,
standard labels are employed to form a succession of Standard Formatted
Data Units (SFDUs) and TLVOs into a product. The term data product is
synonymous with data unit although data product normally refers to a iarger
collection of data.

The method for formulating a data product for transfer is to assemble all
of the required data in the desired order and construct an "envelope" or
container that aggregates the combination, binding the enclosed data into a

11-129

named and delimited data product. It is required that the labeling
technique utilized in the "envelope" be globally recognizable and
interpretable to ensure that the contents of the data product are readable.

SFDU construction rules have been defined to define how aggregations of
TLVOs can be assembled. This enables data products to be assembled from
"standardized" TLVO data objects (modules) such as headers, DDPs, and
ancillary data objects which are specially formulated to supply the
necessary data required by a system service (e.g. data catalog systems).

See References [2], [3],[4] for a formal description of the construction
rules.

The various types of data which might be
(at least) four general categories:

Selection (catalog search) items
The main data le
Ancillary data pertaining to main le
Data structure items

may be grouped into

Each of these categories involve the system services in potentially unique
ways.

Selection - these include information about the data instance which
will be used in catalogs and which will be searched during the process of
finding a file to meet specific criteria. They will typically be included
with the main file and passed to the catalog function without modification.

Main Data - the data le which the subject of the transfer.

Ancillary This is information of use to the experimenter in
interpreting the main data or to any SFDO with which it is associated.
This includes data such as conditions of observation of the main file data,
calibrations, units. It typically will not invoke any services action, but
is available on request. Some of these, such as predefined units, may be
found in a data element dictionary and not passed with the main file.
Others, such as engineering parameters, are more instance-specific and may
be passed with the main file.

Data definition package - This includes two types of information: 1)
ancillary definitions pertaining to the data items (the data element
dictionary), and 2) format description items. These latter may take two
basic forms: 1) items which completely describe the format of the SFDO with
which it is associated; 2) items which complete a generic format
description, to be passed to the generic format at run time. The former
items are typically found in a format library and not passed with the data
file; the latter, such as array sizes, are passed with the data file to
complete the format definition for the specific instance involved.

FORMAT DESCRIPTION - THE TSDL

A data description language, the Transfer Syntax Description Language
(TSDL) is being developed as one approach toward describing the data files.
[5], [6] Following is a brief overview of the intended TSDL capabilities.

11-1

These capabilities, not found in other data descriptions, serve as the
reason for developing the TSDL.

TSDL is conceived as a media-independent, content-independent tool for
the transfer of information between dissimilar computer systems. It is
NOT a tool for the of . It does not require
the of data terminators, or any change in a user data file,
and thus may be used to describe archived files. Machine numerical forms
may be used and described, without modification. It permits the sender to
describe the transferred information and to send this description
separately or as an integral part of the transfer le. It permits the
description of both character and bit field information in fixed- (without
del) variable-width (delimited) fields or subfields. It

the of subfields by arbitrarily
long names and labels which serve to give meaning to the data. In
addition, it provides for definition and labeling of complex

and

TSDL Structure

Punctuation used are as fol

< >
[]

indicates a logical entity
indicates ly .,.,.., ... o.co.c•n...-

{ }
()

indicates optional repetition
indicates

The TSDL Module
contains information
Extension carries
interrel

of Core, Extension, and Data records. The Core
about the module and data as a whole, and the

the desriptions of the data fields and their

<Module> ::=<Core> [<Extension>] [{<Datal>}] ... [{<Datan>}]

The Core and Extension records each consist of a seies of segments having a
single Backus-Nauer (BNF) form:

<Core> ::={<Segment>}

<Extension> ::={<Segment>}.

Each segment consists of a Length-Type-Value series of fields:

<Segment> : : =

Tag is the
SegValue is the Segment
IS(is an ASCII
The Length ld

the IS, inclusive.

The TSDL may
are

This
of

<Tag> ISl <SegValue> ISn where

(Name)
data contents

separator
1 of the Segment, from the [Tag] to

as Keyword-driven, where the TSDL keywords
standard, recognizable, group of segment tags is

which a given instance may be assembled.
a TSDL Module from a relatively small group
plus Tags. Similarly, the

11-1 1

user may define keywords (Labels) for the data fields of the user records.
These fields are described by the TSDL and may be located by application
software using the labels as keywords. Thus, only those Tags and Labels
necessary for the instance need be included. This approach provides a more
flexible and extensible descriptive form than pre-defined descriptive
formats.

Data Field Structure Description

The philosophy behind the structure definitions is that in
series of bytes, there is no inherent logical structure,
grouping of the bytes or to any numerical or logical forms
computers. Therefore, everything must be defined.

a transmitted
either to the
recognized by

The data field structures are described in a series of entries
Type Definitions which are related to the corresponding data
through labels as follows:

called
fields

New variables, arrays and complex data field structures may be defined
once in a Structure segment or a Type segment and subsequently used:

STRUCT ISl <label> , [<type>] : {<Type Definition>)}
TYPE ISl ,{(<label>,<Type Definition>)}

Attributes for the variables or data fields may be carried in a Domain
Segment.

Type definitions describe the Integer, Real, Character, or other form of
the data field. Type definitions are nested in the sense that definitions
of previously-defined structures or fields may be included by reference,
using a preceding asterisk, in the definitions:

STRUCT ISl <Label> , : [{*<Labell>}] [{<Type Definition>}]

where Labell is a previously-defined Label.

Record Format segments are used to describe data records, and are
structured as:

RECFMT ISl <Xref> , {(<Label>,<Width>,<Offset>,<Type Definition>)}

Xref is the identifier of the data record being described.
Labels are the user-defined field or other aggregate labels.
Width is the width of a data field.
Offset is the offset of the field from the beginning of the data record.

The structures of externally-defined fields may be referenced using the
EXAF (External Authority and Format) segment:

EXAF ISl {<Label> , <Authority> , <Format ID>} where

Label is the user-defined label for this instance,
Authority is the external authority being referenced, and
Format ID is its format reference in the external definition.

11-1

Dataflds

The DATAFLDS segment contains an optionally parenthesized list of the user
data field labels, to whatever depth the user desires, allowing a nested
field(subfield) structure definition. The allowable set of labels are
those specified in the user application specification. The same labels are
used in the TYPE, RECFMT, STRUCT, EXAF, DOMAIN, and the logical description
segments to allow correlation of the various descriptions.

Hierarchical and Network Stsuctures

The parenthesized Dataflds form will describe a field-subfield type of
hierarchical structure. An alternate method of description is to provide a
list of node labels in a preorder traverse sequence from a single root
representing the section of data, plus an ordered list of the
last node of preorder traverse sequences beginning at each node
(including leaf nodes). These two sequences are carried in the
TRAV(erse) and LASTNODE segments.

Network structures may be described by cutting the structure into a
hierarchical tree, and sending this plus a list of the cut links, using
the LINKLIST Segment.

Relational Structures

Relational structures may be decomposed into a set of orthogonal
relational tables. The structure of the lines of these tables may be
described using the Structure segment. The column headings may be
given as labels in a Dataflds segment, and are the data entry names.

STRUCT: <TableLabel>,Table:<Typdefl>,<Typdef2>, ... ,<Typdefn>
DATAFLDS:<Xref>,<TableLabel>(<ColHdgl>,<ColHdg2>, ... ,<ColHdgn>)
RECFMT: <Xref>,*<TableLabel> where

the DATAFLDS and RECFMT Xref field refers to data records by that name,
and the RECFMT form indicates that each row has the form specified in the
TableLabel Struct segment.

Machine and language independence will be accomplished by: 1) defining the
transfer as a series of bytes, thus eliminating media byte-interchange
problems such as the VAX vs IBM tape formats; 2) providing methods for
defining binary data fields such as machine representations in such a way
that suitable new target representations may be constructed; 3) defining a
canonical interface as a pair of ASCII tables which describe the data
records such a manner that data fields may be located, read, and
converted to the desired representations on the target machine, using the
desired target programming language or DBMS.

The canonical
expected that

is not part of the TSDL specification, as it is

the language being
information required to
tables are expected have

will wish to define this interface to suit
The task of TSDL is to transmit the
the tables. The canonical ASCII interface

contents such as the lowing:

u ... 1

Segment Table (for each segment)

Segment Tag Segment contents verbatim

Access Table (for each data field)

Record Label Field Label Structure Width Position Type Definitions

The total set of capabilities, from the consistent segment structures,
through the type definition techniques, through the canonical interface,
will constitute a unique and new tool for the systematic transfer of data.
With it available, local software which will be needed to convert user
files to and from the canonical interface will be appreciably simplified.
This software on each end may be independent, one end from the other, thus
reducing the O(n2) problem to an 0(2n) problem.

ACKNOWLEDGEMENT

The material reported in this paper has been sponsored by the Office of
Tracking and Data Acquisition (Code TS) and the Office of Space Science and
Applications Information Systems (Code EI) of NASA Headquarters, and the
work performed at the Jet Propulsion Laboratory under NASA contract.

REFERENCES

[1] "Report Concerning Space Data Systems Standards: Space Data
Systems Operation with Standard Formatted Data Units:
Systems and Implementation Aspects", CCSDS 610.0-G-5, Green
Book, Issue 5, February 1987 or later issue.

[2] "Standard Formatted Data Units - Structure and Construction
Rules", Recommendation CCSDS 620.0-B-1, Blue Book,
Consultative Committee for Space Data Systems, December 1987
or later issue.

[3] "Standard Formatted Data Units - Structure and Construction
Rules: Volume II", Recommendation CCSDS 610.TBD, White
Book, March 1988 or later issue.

(4] "Operations with Standard Formatted Data Units: Product
Aggregation Aspects", Green Book, Issue-1, March 1988

[5] "Transfer Syntax Description Language (General Data
Interchange Language)", Proposed White Book, May, 1988

[6] "Transfer Syntax Description Language, Supporting Documents",
Proposed Green Book, May 1988

u ... 134

